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Rackspace Email

• Dovecot is used to serve IMAP for over a 
million paid mailboxes (MS Exchange also 
available)

• Users assigned to specific backend servers
– With proprietary replication software

• Dovecot IMAP/POP3 proxies in front
– Also for Exchange IMAP/POP3 users

• Amazon S3 for (encrypted) backups
• More about clustering later..



The Talk

• Dovecot features

• IMAP & Dovecot performance

• dbox mailbox format

• Clustering



Dovecot

Pictures from Wikipedia, by Cyril Thomas and Carcharoth



History

• Dovecot design was started around June 2002
• First release was July 2002
• Late 2003 a redesign started
• v1.0.0 released April 13th 2007
• v1.1.0 released June 21st 2008
• v1.2.0 released July 1st 2009
• v2.0 betas hopefully this year



Features

• Often has better performance than competition.
– Optimized for minimizing disk I/O (index/cache files)

– Hosting my own mails on 10 years old Sparc helps

• Highly configurable for different environments
– Standard mbox and Maildir with transparent indexing 

(external mailbox modifications are ok)

– dbox: Dovecot’s high-performance mailbox format

– Many different ways of clustering

– Extremely flexible authentication
• Postfix and Exim support Dovecot for SMTP AUTH



Features
• Admin-friendly / self-healing

– All errors are logged

– Understandable error messages
– Improved constantly (to reduce my email load)

– Detected (index) corruption gets fixed 
automatically

• file_dotlock_create(/home/timo/Maildir/dovecot-uidlist) failed: 
Permission denied (euid=1000(timo) egid=1000(timo) missing +x perm:

/home/timo)

• chown(/home/timo/Maildir/.box, -1, 0(root)) failed: Operation not 
permitted (egid=1000(timo), group based on /home/timo/Maildir)



v1.2 New Features

• Virtual mailboxes (search views)
– ”All unread emails in all mailboxes”

– All messages in all mailboxes (except Trash)
• Virtual POP3 INBOX

• For searching messages from all mailboxes

• gmail-like conversation views

• Users can share mailboxes to each others
– IMAP ACL commands

• Modification sequences (CONDSTORE)
– Custom code wanting quick sync? (e.g. backups)



Authentication

• Password and user database separation
– Passdb for verifying user’s password
– Userdb for looking up how to access mailbox

• Support for almost everything: SQL, LDAP, 
PAM, checkpassword scripts, etc.
– Everything is configurable (e.g. full SQL queries)
– Supports multiple dbs (e.g. system + virtual users)

• Auth mechanisms: PLAIN, CRAM-MD5, 
DIGEST-MD5, Kerberos, OTP, etc.

• Password schemes: Plaintext, CRYPT, MD5, 
SHA1, SHA256, SSHA, SSHA256, etc.



Authentication Cache

• Passdb and userdb lookups can be cached

• Password changes are automatically detected: 
If auth is unsuccessful, and previous auth was
a) successful: do uncached passdb lookup

b) usuccessful: fail login

• Negative caching can be disabled
– User doesn’t exist caching

– Password failures (v1.2+)

• Avoids a need for imapproxy with webmails?



IMAP Protocol

• Base protocol is complex – difficult to 
implement it correctly (both client & server)

• Flexible – many different ways to implement a 
client (online & offline clients)

• Extensible – there are a lot of extensions
– Clients rarely support more than some basic 

extensions, such as IDLE.
– Thunderbird v3 adds support for several new 

extensions, such as CONDSTORE.



ImapTest IMAP Server Tester

• Written originally for Dovecot stress testing
– Found a lot of crashes, hangs and mailbox corruption 

on other IMAP servers as well

• Tests IMAP server compliance with scripted tests 
and dynamic random stress testing.

• Dovecot is currently the only IMAP server that 
fully passes all of ImapTest tests.
• Panda IMAP is practically there too

• Most other servers fail in many different ways.
• http://imapwiki.org/ImapTest



Offline IMAP Clients

• Typically download newly seen messages’ bodies 
once and cache them locally

• Often can be configured to download 
immediately vs. download when reading

• Some use server side searches (Thunderbird) and 
some don’t (Outlook – if some messages haven’t 
been downloaded, those aren’t searched)

• Usually also fetch messages’ metadata once 
(headers, received date)

• Server-side caching may help, but not that much
– It’s extra disk I/O -> more likely just hurts



Online IMAP Clients

• Webmails often keep asking for the same 
information over and over and over again

• Pine and some webmails cache what they’ve 
already seen, but not permanently

• Mutt (without local cache) and some others 
fetch all messages’ metadata every time when 
opening a mailbox

• Caching is very useful, but different clients 
want different metadata 



IMAP Server Performance

• Difficult to benchmark
• Depends a lot on clients: Whether clients use 

a local cache makes a huge difference.
– Online vs. offline clients

• What data to index/cache?
• SPECmail2009 adds support for IMAP

– Emulates different IMAP clients. Client amounts 
are configurable.

– The only benchmark giving realistic results.



Dovecot Cache File

• dovecot.index.cache files
• The main reason for Dovecot’s good performance
• Dynamic: caches only what clients want.

– Specific message headers (From:, Subject:, etc),
– MIME structure information,
– Sent / received date, etc.

• Caching decisions for each field: “no”, “temporary”, 
“permanent”

• Unused fields dropped after a month.
• Cached data never changes (IMAP guarantees)
• Cache file gets “compressed” once in a while
• Often about 10-20% of mailbox size



Dovecot Index Files

• dovecot.index contains messages’ metadata
– IMAP Unique ID number (UID) identifies messages

– Flags (\Seen, \Answered, keywords, etc.)

– Extension data: mbox file offsets, cache file 
offsets, modseq number (v1.2 CONDSTORE), etc.

• Lazily created/updated since v1.1
– dovecot.index.log has all the latest changes. 

dovecot.index is updated after 8 kB of new data 
has been written to the .log  



Dovecot Index Files

• dovecot.index.log is a mailbox transaction log
– Somewhat similar to databases’ transaction logs 

or filesystem journals.
– Contains all changes to be done to dovecot.index.

• dovecot.index is read to memory once and 
then updated from dovecot.index.log
– Very efficient with NFS / clustered filesystems!
– Very efficient to find out what changes another 

session had done!



Plugins

• Dovecot plugins can hook into almost anything 
and modify Dovecot’s behavior. Some existing 
features implemented as plugins:
– Access Control Lists
– Quota
– Full text search indexes
– Reading compressed mbox/maildir files

• Can add new IMAP commands
• Implement new mail storage backends (virtual, 

SQL, IMAP proxying)



Mailbox Formats

• mbox
– One mailbox = one file

• Slow to delete old messages

• Maildir
– One file = one message

• Fast to delete messages
• Slow(er) to read through all messages
• File read order affects performance, even 2x or more!

• Single-dbox and multi-dbox
– Dovecot’s extensible and high-peformance 

mailbox formats



Single-dbox
• Available in Dovecot v1.1 and later
• Main advantage over Maildir: filenames don’t 

change.
• Directory layout looks like:

– mailboxes/INBOX/dbox-Mails/
• dbox.index – dbox index (removed in v2.0)
• dovecot.index* - Dovecot’s index files
• u.123 - Message data for IMAP UID 123
• u.125 - Message data for IMAP UID 125

– mailboxes/Trash/dbox-Mails/
– mailboxes/Trash/temp/dbox-Mails/



Single-dbox

• Primary metadata storage is Dovecot’s index 
files
• Metadata backups written about once a day to 

dbox files -> losing indexes won’t lose all flags

• Automatically fixes/rebuilds broken/lost 
indexes

• Future: Dovecot v2.0 no longer writes flags to 
dbox files. It creates separate index file 
backups instead.



dbox File Format
• File header

– Message header size

– File creation data

• Message header (extensible)
– Message size

• Message body

• Message metadata (extensible)
– Message’s globally Unique ID (GUID)

– Receive and save date/time

– Message’s ”virtual size”

– etc.

• [multi-dbox: Next message…]



Single-dbox: Maildir Migration

• Superfast migration from Maildir:
– Renames Maildir/cur/ to dbox-Mails/

– Moves other useful Maildir files too

• New mails will be saved using native dbox 
format

• Old mails get converted to dbox later when 
user changes old mails’ flags.
– Mails might stay as Maildir for a long time



Single-dbox: Alternative Storage

• Users rarely access their old mails
• Lower performance storage is cheaper

-> Move old mails to low performance storage
• dbox supports ”alternative path” setting: If a 

dbox file isn’t found from primary path, it’s 
looked up from alternative path.
– mail_location = dbox:~/dbox:ALT=/slow/%u/dbox

• Future: Support for cloud storage (like 
CloudFiles/S3)?



Multi-dbox

• Available in upcoming Dovecot v2.0
• Multiple messages in a single file
• Multiple files in a single mailbox

– Files are about 2 MB (configurable)
– Can be rotated every n days (for incremental backups)
– Larger files -> less fragmentation, but deletion slower
– Delayed ioniced nightly deletions

• Tries very hard to preserve as much data as 
possible in case of (filesystem) corruption.

• Crash or power loss can’t corrupt or lose data



dbox Future

• Single instance attachment storage

• Abstract out filesystem access and implement
– Regular POSIX I/O

– Async I/O

– Cloud storage I/O

• Make Dovecot do more parallel processing to 
get good performance for (high latency) cloud 
storage and to get full advantage of async I/O.



Dovecot Clustering

• Two different ways to do it:

• Globally shared filesystem
– Many IMAP servers, each able to handle any user

– NFS, cluster filesystems

• Sharding
– Each user’s data mirrored in 2-3 servers

– IMAP proxy forwards users to correct server(s)

– DRBD, proprietary clustering software/hardware



Clustering: Two Types of Data

• Message data
– Existing messages (files) don’t change
– Users typically read messages once -> message is 

read from disk only once (or few times)
– Latency hurts, but not badly (in future even less)

• Index data
– Constant lookups: ”Has mailbox changed?”
– Latency is very bad for performance
– Existing files change constantly -> caching trouble!

• Different storages for messages/index?



Clustering: NFS

• NFS server is often single point of failure
– Performance problems affect everyone. Might be 

difficult to diagnose/fix.

– Example: NFS locking broke -> restarted -> 
Dovecot became unusably slow

• Caching problems, especially with index files
– mail_nfs_* settings try to solve these

• Index files on local disk helps performance

• http://wiki.dovecot.org/NFS



Clustering: NFS

• Sticky servers for users = only one server 
modifies a user’s mailbox
– IMAP proxy looks up destination server from db
– Avoids caching problems
– If mail delivery updates indexes, must be done by 

the same server as IMAP.
• Each server receives mails with SMTP/LMTP

– Storing indexes on local disks helps performance
• If server goes down, reindexing may be slow
• DRBD hybrid?



Clustering: Cluster FS

• Dovecot known to work with GFS, OCFS2, ..

• Less caching problems than with NFS
– Performance still better when user accesses only 

single server (better caching, less lock waits)

• Performance?
– Many small files are bad?



Clustering: Sharding

• Typically in active/passive server pairs:

• Dedicated active and passive servers
– Wastes servers

• Crossed pairs
– Each server is active for one set of users and 

passive for another set of users

– Server failure doubles the passive’s load

• Dovecot IMAP/POP3 proxy cluster in front



Clustering: Sharding

• Distribute individual users (not entire 
domains) to different servers
– Reduces load spikes

• Use statistics to automatically distribute heavy 
users to different servers
– v1.2 can export very detailed statistics via plugin

– v2.0’s upcoming dsync utility



Clustering: DRBD

• Filesystem corruption gets replicated

• Synchronous replication
– No mail loss on failures

– Too slow for cross-datacenter(?)

• Asynchronous replication
– Some data loss on failure

• 3 servers: Sync replication for in-datacenter 
and async for cross-datacenter backup?



Clustering Future: The Cloud

• Save message data in cheap cloud storage
– Typically simple APIs to access files

• dbox designed for this

– Typically higher latency
• Dovecot needs to do more work while waiting

• Index data kept primarily in memory
– Must be very low latency -> direct communication 

between servers that access the same mailbox
– Permanent (backup) storage may still be in cloud

• Result: multi-master replication



Dovecot v2.0

• Some new features already implemented:
– Redesigned master process

• Easy to add external services, e.g. ManageSieve

– Redesigned configuration
• Local/remote IP/mask -specific configuration

– SSL certs

• Allow changing config data source (e.g. SQL?)

– LMTP server
– dsync: Realiably and efficiently sync two mailboxes 

(e.g. via SSH)



Dovecot v2.0

• Features not yet implemented, but hopefully 
will be by the end of this year:
– Index file improvements

• No locking (with atomic appends)

• Small checksums all around for detecting corruption

• In general make the code simpler and more robust

– Multi-master replication
• dbox cloud storage (for some existing cloud API(s)?)

• Index sharing/replication between servers



Questions?
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