
Dovecot IMAP Server

http://www.dovecot.org/

Date: July, 2009

Rackspace Email

• Dovecot is used to serve IMAP for over a
million paid mailboxes (MS Exchange also
available)

• Users assigned to specific backend servers
– With proprietary replication software

• Dovecot IMAP/POP3 proxies in front
– Also for Exchange IMAP/POP3 users

• Amazon S3 for (encrypted) backups
• More about clustering later..

The Talk

• Dovecot features

• IMAP & Dovecot performance

• dbox mailbox format

• Clustering

Dovecot

Pictures from Wikipedia, by Cyril Thomas and Carcharoth

History

• Dovecot design was started around June 2002
• First release was July 2002
• Late 2003 a redesign started
• v1.0.0 released April 13th 2007
• v1.1.0 released June 21st 2008
• v1.2.0 released July 1st 2009
• v2.0 betas hopefully this year

Features

• Often has better performance than competition.
– Optimized for minimizing disk I/O (index/cache files)

– Hosting my own mails on 10 years old Sparc helps

• Highly configurable for different environments
– Standard mbox and Maildir with transparent indexing

(external mailbox modifications are ok)

– dbox: Dovecot’s high-performance mailbox format

– Many different ways of clustering

– Extremely flexible authentication
• Postfix and Exim support Dovecot for SMTP AUTH

Features
• Admin-friendly / self-healing

– All errors are logged

– Understandable error messages
– Improved constantly (to reduce my email load)

– Detected (index) corruption gets fixed
automatically

• file_dotlock_create(/home/timo/Maildir/dovecot-uidlist) failed:
Permission denied (euid=1000(timo) egid=1000(timo) missing +x perm:

/home/timo)

• chown(/home/timo/Maildir/.box, -1, 0(root)) failed: Operation not
permitted (egid=1000(timo), group based on /home/timo/Maildir)

v1.2 New Features

• Virtual mailboxes (search views)
– ”All unread emails in all mailboxes”

– All messages in all mailboxes (except Trash)
• Virtual POP3 INBOX

• For searching messages from all mailboxes

• gmail-like conversation views

• Users can share mailboxes to each others
– IMAP ACL commands

• Modification sequences (CONDSTORE)
– Custom code wanting quick sync? (e.g. backups)

Authentication

• Password and user database separation
– Passdb for verifying user’s password
– Userdb for looking up how to access mailbox

• Support for almost everything: SQL, LDAP,
PAM, checkpassword scripts, etc.
– Everything is configurable (e.g. full SQL queries)
– Supports multiple dbs (e.g. system + virtual users)

• Auth mechanisms: PLAIN, CRAM-MD5,
DIGEST-MD5, Kerberos, OTP, etc.

• Password schemes: Plaintext, CRYPT, MD5,
SHA1, SHA256, SSHA, SSHA256, etc.

Authentication Cache

• Passdb and userdb lookups can be cached

• Password changes are automatically detected:
If auth is unsuccessful, and previous auth was
a) successful: do uncached passdb lookup

b) usuccessful: fail login

• Negative caching can be disabled
– User doesn’t exist caching

– Password failures (v1.2+)

• Avoids a need for imapproxy with webmails?

IMAP Protocol

• Base protocol is complex – difficult to
implement it correctly (both client & server)

• Flexible – many different ways to implement a
client (online & offline clients)

• Extensible – there are a lot of extensions
– Clients rarely support more than some basic

extensions, such as IDLE.
– Thunderbird v3 adds support for several new

extensions, such as CONDSTORE.

ImapTest IMAP Server Tester

• Written originally for Dovecot stress testing
– Found a lot of crashes, hangs and mailbox corruption

on other IMAP servers as well

• Tests IMAP server compliance with scripted tests
and dynamic random stress testing.

• Dovecot is currently the only IMAP server that
fully passes all of ImapTest tests.
• Panda IMAP is practically there too

• Most other servers fail in many different ways.
• http://imapwiki.org/ImapTest

Offline IMAP Clients

• Typically download newly seen messages’ bodies
once and cache them locally

• Often can be configured to download
immediately vs. download when reading

• Some use server side searches (Thunderbird) and
some don’t (Outlook – if some messages haven’t
been downloaded, those aren’t searched)

• Usually also fetch messages’ metadata once
(headers, received date)

• Server-side caching may help, but not that much
– It’s extra disk I/O -> more likely just hurts

Online IMAP Clients

• Webmails often keep asking for the same
information over and over and over again

• Pine and some webmails cache what they’ve
already seen, but not permanently

• Mutt (without local cache) and some others
fetch all messages’ metadata every time when
opening a mailbox

• Caching is very useful, but different clients
want different metadata

IMAP Server Performance

• Difficult to benchmark
• Depends a lot on clients: Whether clients use

a local cache makes a huge difference.
– Online vs. offline clients

• What data to index/cache?
• SPECmail2009 adds support for IMAP

– Emulates different IMAP clients. Client amounts
are configurable.

– The only benchmark giving realistic results.

Dovecot Cache File

• dovecot.index.cache files
• The main reason for Dovecot’s good performance
• Dynamic: caches only what clients want.

– Specific message headers (From:, Subject:, etc),
– MIME structure information,
– Sent / received date, etc.

• Caching decisions for each field: “no”, “temporary”,
“permanent”

• Unused fields dropped after a month.
• Cached data never changes (IMAP guarantees)
• Cache file gets “compressed” once in a while
• Often about 10-20% of mailbox size

Dovecot Index Files

• dovecot.index contains messages’ metadata
– IMAP Unique ID number (UID) identifies messages

– Flags (\Seen, \Answered, keywords, etc.)

– Extension data: mbox file offsets, cache file
offsets, modseq number (v1.2 CONDSTORE), etc.

• Lazily created/updated since v1.1
– dovecot.index.log has all the latest changes.

dovecot.index is updated after 8 kB of new data
has been written to the .log

Dovecot Index Files

• dovecot.index.log is a mailbox transaction log
– Somewhat similar to databases’ transaction logs

or filesystem journals.
– Contains all changes to be done to dovecot.index.

• dovecot.index is read to memory once and
then updated from dovecot.index.log
– Very efficient with NFS / clustered filesystems!
– Very efficient to find out what changes another

session had done!

Plugins

• Dovecot plugins can hook into almost anything
and modify Dovecot’s behavior. Some existing
features implemented as plugins:
– Access Control Lists
– Quota
– Full text search indexes
– Reading compressed mbox/maildir files

• Can add new IMAP commands
• Implement new mail storage backends (virtual,

SQL, IMAP proxying)

Mailbox Formats

• mbox
– One mailbox = one file

• Slow to delete old messages

• Maildir
– One file = one message

• Fast to delete messages
• Slow(er) to read through all messages
• File read order affects performance, even 2x or more!

• Single-dbox and multi-dbox
– Dovecot’s extensible and high-peformance

mailbox formats

Single-dbox
• Available in Dovecot v1.1 and later
• Main advantage over Maildir: filenames don’t

change.
• Directory layout looks like:

– mailboxes/INBOX/dbox-Mails/
• dbox.index – dbox index (removed in v2.0)
• dovecot.index* - Dovecot’s index files
• u.123 - Message data for IMAP UID 123
• u.125 - Message data for IMAP UID 125

– mailboxes/Trash/dbox-Mails/
– mailboxes/Trash/temp/dbox-Mails/

Single-dbox

• Primary metadata storage is Dovecot’s index
files
• Metadata backups written about once a day to

dbox files -> losing indexes won’t lose all flags

• Automatically fixes/rebuilds broken/lost
indexes

• Future: Dovecot v2.0 no longer writes flags to
dbox files. It creates separate index file
backups instead.

dbox File Format
• File header

– Message header size

– File creation data

• Message header (extensible)
– Message size

• Message body

• Message metadata (extensible)
– Message’s globally Unique ID (GUID)

– Receive and save date/time

– Message’s ”virtual size”

– etc.

• [multi-dbox: Next message…]

Single-dbox: Maildir Migration

• Superfast migration from Maildir:
– Renames Maildir/cur/ to dbox-Mails/

– Moves other useful Maildir files too

• New mails will be saved using native dbox
format

• Old mails get converted to dbox later when
user changes old mails’ flags.
– Mails might stay as Maildir for a long time

Single-dbox: Alternative Storage

• Users rarely access their old mails
• Lower performance storage is cheaper

-> Move old mails to low performance storage
• dbox supports ”alternative path” setting: If a

dbox file isn’t found from primary path, it’s
looked up from alternative path.
– mail_location = dbox:~/dbox:ALT=/slow/%u/dbox

• Future: Support for cloud storage (like
CloudFiles/S3)?

Multi-dbox

• Available in upcoming Dovecot v2.0
• Multiple messages in a single file
• Multiple files in a single mailbox

– Files are about 2 MB (configurable)
– Can be rotated every n days (for incremental backups)
– Larger files -> less fragmentation, but deletion slower
– Delayed ioniced nightly deletions

• Tries very hard to preserve as much data as
possible in case of (filesystem) corruption.

• Crash or power loss can’t corrupt or lose data

dbox Future

• Single instance attachment storage

• Abstract out filesystem access and implement
– Regular POSIX I/O

– Async I/O

– Cloud storage I/O

• Make Dovecot do more parallel processing to
get good performance for (high latency) cloud
storage and to get full advantage of async I/O.

Dovecot Clustering

• Two different ways to do it:

• Globally shared filesystem
– Many IMAP servers, each able to handle any user

– NFS, cluster filesystems

• Sharding
– Each user’s data mirrored in 2-3 servers

– IMAP proxy forwards users to correct server(s)

– DRBD, proprietary clustering software/hardware

Clustering: Two Types of Data

• Message data
– Existing messages (files) don’t change
– Users typically read messages once -> message is

read from disk only once (or few times)
– Latency hurts, but not badly (in future even less)

• Index data
– Constant lookups: ”Has mailbox changed?”
– Latency is very bad for performance
– Existing files change constantly -> caching trouble!

• Different storages for messages/index?

Clustering: NFS

• NFS server is often single point of failure
– Performance problems affect everyone. Might be

difficult to diagnose/fix.

– Example: NFS locking broke -> restarted ->
Dovecot became unusably slow

• Caching problems, especially with index files
– mail_nfs_* settings try to solve these

• Index files on local disk helps performance

• http://wiki.dovecot.org/NFS

Clustering: NFS

• Sticky servers for users = only one server
modifies a user’s mailbox
– IMAP proxy looks up destination server from db
– Avoids caching problems
– If mail delivery updates indexes, must be done by

the same server as IMAP.
• Each server receives mails with SMTP/LMTP

– Storing indexes on local disks helps performance
• If server goes down, reindexing may be slow
• DRBD hybrid?

Clustering: Cluster FS

• Dovecot known to work with GFS, OCFS2, ..

• Less caching problems than with NFS
– Performance still better when user accesses only

single server (better caching, less lock waits)

• Performance?
– Many small files are bad?

Clustering: Sharding

• Typically in active/passive server pairs:

• Dedicated active and passive servers
– Wastes servers

• Crossed pairs
– Each server is active for one set of users and

passive for another set of users

– Server failure doubles the passive’s load

• Dovecot IMAP/POP3 proxy cluster in front

Clustering: Sharding

• Distribute individual users (not entire
domains) to different servers
– Reduces load spikes

• Use statistics to automatically distribute heavy
users to different servers
– v1.2 can export very detailed statistics via plugin

– v2.0’s upcoming dsync utility

Clustering: DRBD

• Filesystem corruption gets replicated

• Synchronous replication
– No mail loss on failures

– Too slow for cross-datacenter(?)

• Asynchronous replication
– Some data loss on failure

• 3 servers: Sync replication for in-datacenter
and async for cross-datacenter backup?

Clustering Future: The Cloud

• Save message data in cheap cloud storage
– Typically simple APIs to access files

• dbox designed for this

– Typically higher latency
• Dovecot needs to do more work while waiting

• Index data kept primarily in memory
– Must be very low latency -> direct communication

between servers that access the same mailbox
– Permanent (backup) storage may still be in cloud

• Result: multi-master replication

Dovecot v2.0

• Some new features already implemented:
– Redesigned master process

• Easy to add external services, e.g. ManageSieve

– Redesigned configuration
• Local/remote IP/mask -specific configuration

– SSL certs

• Allow changing config data source (e.g. SQL?)

– LMTP server
– dsync: Realiably and efficiently sync two mailboxes

(e.g. via SSH)

Dovecot v2.0

• Features not yet implemented, but hopefully
will be by the end of this year:
– Index file improvements

• No locking (with atomic appends)

• Small checksums all around for detecting corruption

• In general make the code simpler and more robust

– Multi-master replication
• dbox cloud storage (for some existing cloud API(s)?)

• Index sharing/replication between servers

Questions?

	Foliennummer 1
	Rackspace Email
	The Talk
	Dovecot
	History
	Features
	Features
	v1.2 New Features
	Authentication
	Authentication Cache
	IMAP Protocol
	ImapTest IMAP Server Tester
	Offline IMAP Clients
	Online IMAP Clients
	IMAP Server Performance
	Dovecot Cache File
	Dovecot Index Files
	Dovecot Index Files
	Plugins
	Mailbox Formats
	Single-dbox
	Single-dbox
	dbox File Format
	Single-dbox: Maildir Migration
	Single-dbox: Alternative Storage
	Multi-dbox
	dbox Future
	Dovecot Clustering
	Clustering: Two Types of Data
	Clustering: NFS
	Clustering: NFS
	Clustering: Cluster FS
	Clustering: Sharding
	Clustering: Sharding
	Clustering: DRBD
	Clustering Future: The Cloud
	Dovecot v2.0
	Dovecot v2.0
	Questions?

