
Live Kernel Patching

DSU applied to the Linux Kernel

SLAC 2015
2015-06-24 13:35 UTC

Matthias G. Eckermann
Senior Product Manager
mge@suse.com

Why live patching?

mailto:mge@suse.com

4

Why live patching?

• Huge cost of downtime:
‒ Hourly cost >$100K for 95% Enterprises – ITIC
‒ $250K - $350K for a day in a worldwide manufacturing firm -

TechTarget

• The goal is clear: reduce planned downtime.

5

Why Live Patching?
Change Management

Common tiers of change management

1. Incident response
“We are down, actively exploited …”

http://itic-corp.com/blog/2013/07/one-hour-of-downtime-costs-100k-for-95-of-enterprises/
http://searchdatacenter.techtarget.com/feature/The-causes-and-costs-of-data-center-system-downtime-Advisory-Board-QA

6

Why Live Patching?
Change Management

Common tiers of change management

1. Incident response
“We are down, actively exploited …”

2. Emergency change
“We could go down, are vulnerable …”

7

Why Live Patching?
Change Management

Common tiers of change management

1. Incident response
“We are down, actively exploited …”

2. Emergency change
“We could go down, are vulnerable …”

3. Scheduled change
“Time is not critical, we keep safe”

8

Why Live Patching?
Change Management

Common tiers of change management

1. Incident response
“We are down, actively exploited …”

2. Emergency change
“We could go down, are vulnerable …”

3. Scheduled change
“Time is not critical, we keep safe”

} Kernel
Live
Patching

9

Barcelona Supercomputing Centre
Mare Nostrum supercomputer

• 50k Sandy
Bridge cores

• The most
beautiful
supercomputer
in the world

• Terabytes of
data

• Reboot?
© BSC

10

NASA JPL
Hale telescope PALM-3000 Adaptive optics

© NASA JPL

• 5m telescope with
adaptive optics on
Mount Palomar

• Avoid atmospheric
blurring in Real Time

• Control 3888
segments of a
deformable mirror
with a latency
<250 μs

• Reboot?

11

SAP HANA
In-memory database and analytics engine

• 4-16 TB of RAM

• All operations done in
memory

• Disk used for journalling

• Active-Passive HA

• Failover measured in
seconds

• Reboot?

© HP

HP DL980 w/ 12 TB RAM

History of DSU

13

1943: Manhattan project – punchcards

• IBM punchcard automatic
calculators were used to
crunch the numbers

• A month before the Trinity
nuclear device test, the
question was: “What will the
yield be, how much energy
will be released?”

• The calculation would
normally take three months
to complete – recalculating
any batches with errors

• Multiple colored punch
cards introduced to fix
errors in calculations while
the calculator was running

Image in public domain

• Trinity test site, 16ms after
initiation

14

Modern history of DSU: C language

• DSU: Dynamic Software Updates
‒ the goal is to be able to fix bugs and add features
‒ either by changing some functions
‒ or replacing the whole program

• Let's focus only on C
‒ the Linux kernel is (mostly) in C
‒ all the major techniques were developed for C
‒ C most closely matches the system ABI

1990 201520001995 2005 2010

15

1991-1993: PoDUS (University of Michigan)

• The first DSU to work on C in Berkeley Unix
• Uses binary overwriting of code segments
• The first to include Activeness Safety

‒ functions are only changed when not running or on stack
• No state format changes allowed

Segment overwriting
Activeness Safety

1990 201520001995 2005 2010

PoDUS

16

1994: Deepak Gupta's DSU (IIT)

• Proved that the safety of applying an update is
undecidable in general.
‒ by reduction to the halting problem

• Replaces whole program with a new version
• Introduces State Transfer

‒ no state transformation yet, no state format changes allowed

Whole program replacement
State Transfer

1990 201520001995 2005 2010

PoDUS Gupta

17

1998: Erlang (Ericsson)

• Not C, an own language, with DSU built-in
• Replacing functions on the fly
• Relies on the programmer for safety
• The first commercially deployed DSU

‒ widely deployed in telecommunications systems

Commercially deployed

1990 201520001995 2005 2010

PoDUS Gupta Erlang

18

2006: Ginseng (U of Maryland, U of Cambridge, ETH Zurich)

• Introducing automated patch generation
• Uses function indirection and lazy migration
• Introducing type safety

‒ Decides which functions to call based on matching data types

Patch generation
Type safety
Function indirection
Lazy migration

1990 201520001995 2005 2010

PoDUS Gupta Erlang Ginseng

19

2008: Ksplice (MIT, Oracle)

• First to patch Linux kernel
• Stops kernel execution for activeness check

‒ restarts and tries again later when active
• Uses jumps patched into functions for redirection

‒ solves the call by pointer problem

Commercially deployed
Kernel patching
Activeness safety
Binary patching

1990 201520001995 2005 2010

PoDUS Gupta Erlang Ginseng Ksplice

20

2009: UpStare (Arizona State University)

• Introduces Stack reconstruction
‒ rebuilds stacks to match the new software

• Immediate patching
‒ no Activeness safety required

Stack reconstruction
Immediate patching

1990 201520001995 2005 2010

PoDUS Gupta Erlang Ginseng

UpStare

Ksplice

21

2011: Kitsune and Ekiden (University of Maryland)

• Introduces State transformation
‒ transforms state to match the new software

• Uses controlled updating with safe points

State transformation
Safe points

1990 201520001995 2005 2010

PoDUS Gupta Erlang Ginseng

UpStare

Ksplice Kitsune

22

2014: kpatch (Red Hat)

• Linux kernel patching
• Originally uses the same consistency model as ksplice

1990 201520001995 2005 2010

PoDUS Gupta Erlang Ginseng

UpStare

Ksplice kpatch

Kernel patching
Activeness safety
Binary patching

Kitsune

23

2014: kGraft (SUSE)

• Linux kernel patching
• Immediate patching with lazy migration

‒ Function type safety
• Commercially deployed

Commercially deployed
Linux kernel
Immediate
Lazy migration

1990 201520001995 2005 2010

PoDUS Gupta Erlang Ginseng

UpStare

Ksplice Kitsune kpatch
kGraft

kGraft

25

kGraft goals

• Applying limited scope fixes to the Linux kernel
‒ security, stability and corruption fixes

• Require minimal changes to the source code
‒ no changes outside the kGraft engine itself

• Have no runtime performance impact
‒ full speed of execution

• No interruption of applications while patching
‒ full speed of execution

• Allow full review of patch source code
‒ for accountability and security purposes

26

Patch Lifecycle
More Details

• Build
‒ Identify changed function set
‒ Expand set based on inlining and IPA/SRA compiler decisions
‒ Extract functions from built image (or source code)
‒ Create/adapt framework kernel module source code
‒ Build kernel module

• Load
‒ insmod

• Run
‒ Address redirection using ftrace
‒ Lazy per-thread migration

27

Call Redirection
How Does It Work

• Use of ftrace framework
‒ gcc ­pg is used to generate calls to _fentry_()at the

beginning of every function
‒ ftrace replaces each of these calls with NOP during boot,

removing runtime overhead
‒ When a tracer registers with ftrace, the NOP is runtime patched

to a CALL again
‒ kGraft uses a tracer, too, but then asks ftrace to change the

return address to the new function
‒ And that's it, call is redirected

28

Call redirection
ftrace: SMP-safe code modification

29

Call Redirection
ftrace: return address modification mechanism

30

Call Redirection
The Final Hurdle

• Changing a single function is easy
‒ since ftrace patches at runtime, you just flip the switch

• What if a patch contains multiple functions that
depend on each other?
‒ Number of arguments changes
‒ Types of arguments change
‒ Return type change
‒ Or semantics change

• We need a consistency model
‒ Lazy migration enforcing function type safety

Consistency Models

32

Ksplice Consistency Model
Making a Clean Cut

• Ksplice uses Activeness safety
• First stop_kernel();

‒ that stops all CPUs completely, including all applications
• Then, check all stacks, whether any thread is stopped

within a patched function
• If yes, resume kernel and try again later

‒ and hope it'll be better next time
• If not, flip the switch on all functions and resume the

kernel
• The system may be stopped for 10-40ms typical

• Also implemented in the first version of kpatch

33

kGraft Consistency Model
Keeping Threads Intact

• We want to avoid calling a new function from old and
vice versa: Function type safety

• Execution threads in kernel are of four types
‒ interrupts (initiated by hardware, non-nesting)
‒ user threads (enter kernel through SYSCALL)
‒ kernel threads (infinite sleeping loops in kernel)
‒ idle tasks (active when there is nothing else to do)

• We want to make sure a thread calls either all old
functions or all new

• And we can migrate them one by one to 'new' as they
enter/exit execution

• No stopping for anybody

34

kGraft Consistency Model

35

kGraft Consistency Model
Complications

• How about eternal sleepers?
‒ like getty on a console 10
‒ They'll never exit the kernel
‒ They'll never be migrated to 'new'
‒ They'll block completion of the patching process forever

• #1 Wake them up
‒ sending a fake signal (SIGKGRAFT)
‒ the signal exits the syscall and transparently restarts it

• #2 Just ignore them
‒ once they wake up to do anything, they'll be migrated to 'new'
‒ so they're not a security risk

37

Upstream … or the battle for the best
consistency model

• Ideas' exchange between engineers from
‒ Hitachi
‒ Red Hat
‒ SUSE

• Original consistency models
‒ kpatch (original = ksplice): "leave-set" + "switch-kernel"
‒ kGraft (original): "leave-kernel" + "switch-thread"
‒ kpatch (proposed): "leave-set" + "switch-thread"
‒ kGraft (currently): "leave-kernel+signal"

• Proposed
‒ leave-kernel+signal/switch-thread (kgraft)
‒ leave-set/switch-thread model (kpatch-new)

Demo

Thank you.

39

Your questions?

40

Thanks

Vojtěch Pavlík & Team
Director SUSE Labs

Hannes Kühnemund
Product Manager SUSE Linux Enterprise Live Patching

Corporate Headquarters
Maxfeldstrasse 5
90409 Nuremberg
Germany

+49 911 740 53 0 (Worldwide)
www.suse.com

Join us on:
www.opensuse.org

51

Unpublished Work of SUSE LLC. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE LLC.
Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of
their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated,
abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE.
Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a
product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making
purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document,
and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The
development, release, and timing of features or functionality described for SUSE products remains at the sole
discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in
this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All
third-party trademarks are the property of their respective owners.

