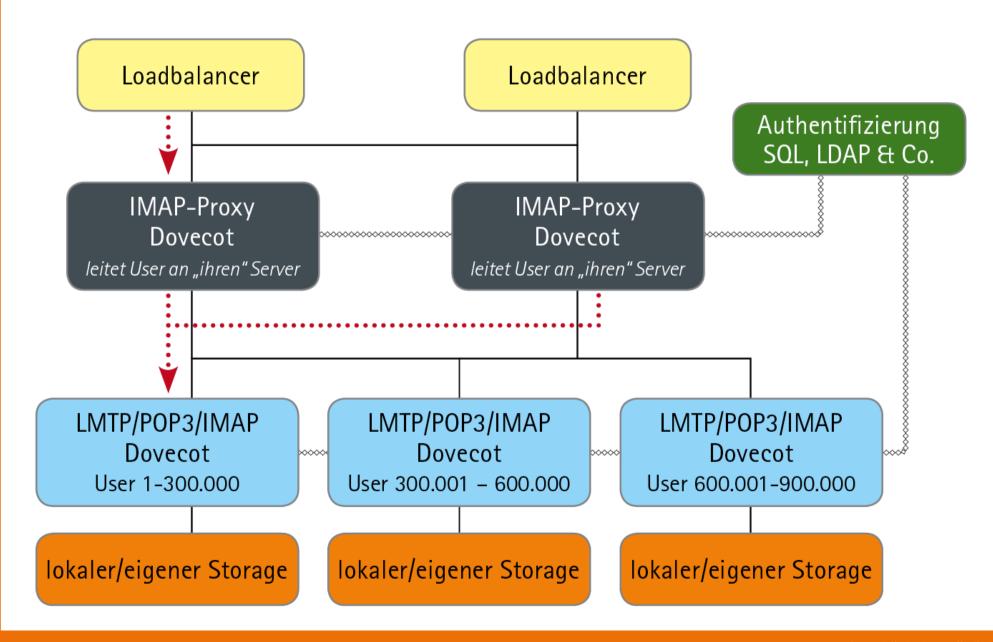


Dovecot: Einfach clustern.

Cluster-Varianten im Überblick

- → Active/Passive-Cluster (DRBD, Shared SAN)
 - → Ausfallsicherheit
- → Active/Active Shared Storage (NFS, Cluster-Filesystem)
 - → Ausfallsicherheit, Breitenskalierung
- → Active/Active Replikation mit individuellem Storage
 - → Ausfallsicherheit, Breitenskalierung
- → Partitionierter Cluster (Aufteilung der Nutzer auf mehrere Server)
 - → Breitenskalierung

Breitenskalierung im partitionierten Cluster



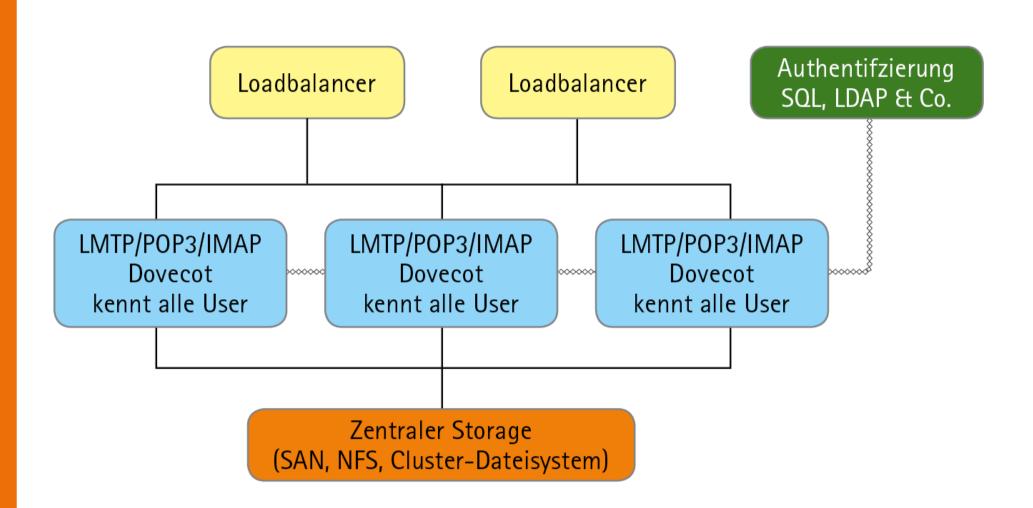
Breitenskalierung im partitionierten Cluster

- → Nutzer haben spezifischen Home-Server
 - → Hinterlegt als LDAP-Attribut o.ä.
- → Keine Ausfallsicherheit des einzelnen Nodes
- → Im Prinzip mehrere einzelne IMAP-Server
- → Lastverteilung über alle Nodes
- → Hat nichts mit Verfügbarkeit zu tun
- → Klassischer "Cyrus Murder Cluster"

Die Userverteilung im partitionierten Cluster

- → Layer-7-Loadbalancing nötig ("IMAP-Proxy")
 - → Früher: Perdition
 - → Heute: Dovecot kann selbst als IMAP-Proxy agieren
- → Dedizierte Proxy-Server vor dem eigentlichen Backend
 - → ",proxy=yes" und ",host=<host>" als Ergebnis der UserDB-Abfrage
 - → Proxy-Server sind dumm und trivial keine Mail-Daten, nur Authentifizierung
- → Implizite Proxy-Server im Backend
 - → Connected ein Nutzer auf dem "falschen" Server wird er transparent zum richtigen Zielsystem per TCP/IP weitergeleitet
 - → "proxy=maybe" und "host=<host>" als Ergebnis der UserDB-Abfrage
 - → Gilt für POP3, IMAP und auch LMTP (!)

Active/Active Shared Storage (NFS, Cluster-Filesystem)



Active/Active mit Shared Storage

- → Mehrere Frontend-Server teilen sich einen gemeinsamen Storage
- → NFS: Ein zentrales Dateisystem, überall verfügbar
 - → NFS-Server ist Single Point of Failure?!
- → Cluster-Filesystem unterschiedlichster Art
 - → Ausfallsicher redundant oder ebenfalls Single Point of Failure?

"Shared Storage" hat Designprobleme

- → Schützt vor Hardwareausfall, schützt nicht vor Filesystem-Problemen
- → Nicht Hardware, sondern der logische Datenbestand ist Ausfallrisiko Nr. 1!
 - → Administrationsfehler (rm -rf *, chown, chmod, mv)
 - → Defekte Dateisysteme
 - → Defekte Index-Datenbanken bei mdbox o.ä.
- Blockreplikation repliziert alle Probleme des Dateisystems in Echtzeit

Shared Storage hat Performanceprobleme

- → Dovecots I/O-Optimierungen müssen bei NFS/Cluster-FS abgeschaltet werden
 - → mmap_disable = yes
 - dotlock_use_excl = no # only needed with NFSv2, NFSv3+ supports O_EXCL and it's faster
 - → mail_fsync = always
 - → mail_nfs_storage = yes
 - → mail_nfs_index = yes
- → Dovecot fährt "mit angezogener Handbremse"
 - → I/O suboptimal
 - → Cache suboptimal
 - → Ggf. Latenzprobleme

Breitenskalierung bei Performancengpässen

- → Aber: Die meisten Performanceprobleme sind durch fehlende I/O-Leistung begründet
 - → CPU + Netzwerk nicht das Problem!
- → Breitenskalierung von Frontend-Nodes mit Shared Storage (NFS) erhöht nicht I/O-Leistung, bremst aber im Zugriff.
 - → Absolut kontraprodukiv!
- → Besser: Ein starker Server mit lokalem Storage und viel Cache mit normalem Dateisysteme

Sonderfall Cluster-Filesysteme

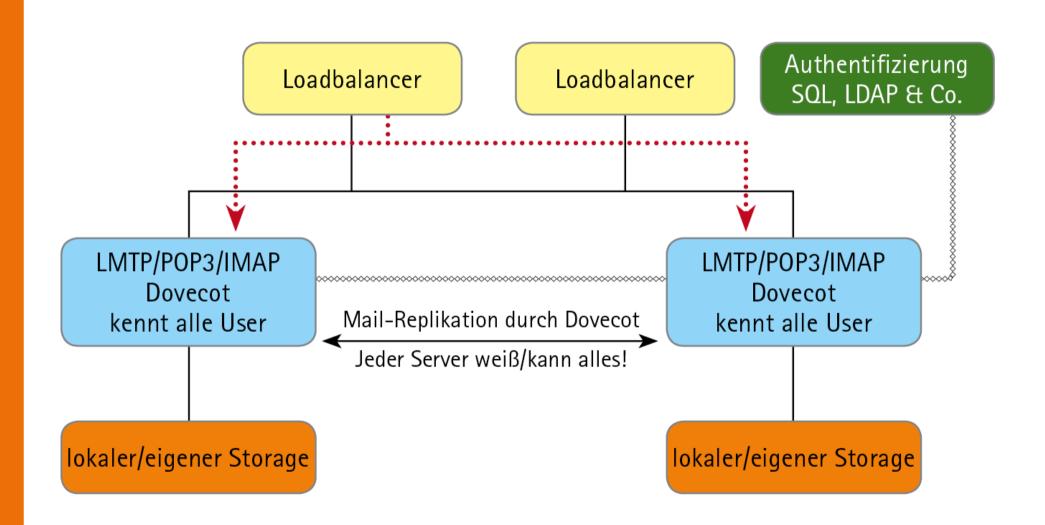
- → Es gibt sehr performante Cluster-Dateisysteme, aber zusätzliche Komplexitätsschicht und Fehlerquelle
 - → Cluster-Filesysteme können I/O-Leistung erhöhen
 - → Achtung: Auch hier ggf. Performance-Optimierungen abschalten/prüfen, sonst defekter Index möglich!
- Gut, wenn man sie täglich zu administrieren weiß, doof, wenn man sich nicht perfekt dabei auskennt.
- → Split-Brain-Problematiken im Cluster-FS möglich (SPoF!)

Active/Passive Cluster (DRBD, Shared SAN)

Blockreplikation mit DRBD

- → Schützt vor Hardware-Defekten der Festplatten
- Kaum Performanceinbuβen, weil immer noch lokales Dateisystem
- → Aber: Datensicherheit bei Administrationsfehlern nach wie vor nicht gegeben
- → Split-Brain-Problematiken möglich!

Active/Active Replikation mit individuellem Storage



Replikation auf Ebene einzelner E-Mails

- → Zwei Dovecot-Nodes mit identischer Konfiguration/Userliste gleichen Mail-Events ab
 - → Neue E-Mails
 - → Verschobene E-Mails
 - → Gelöschte F-Mails
 - → Änderung an Metadaten
- → Zur Sicherheit alle Postfächer regelmäßig über einen Cron-Job synchronisieren!

Replikationen mit "dsync"

- → doveadm kennt mit "dsync" bereits ein Verfahren zum bidirektionalen (!) synchronisieren von Postfächern
 - → Früher: Kommando "dsync mirror"
 - → Heute: "doveadm sync"
- → doveadm auf dem Server über TCP-Port ansprechbar
- → Symmetrischer Schlüssel schützt Kommunikation
- → Zwei Nodes können dsync über TCP/IP fahren

Replikation ist bidirektional!

- → Beide Nodes können parallel angesprochen werden!
- → Active/Active-Setup möglich
- → dsync kommt sehr gut mit Split-Brain-Situationen klar
 - → Sehr geringes Risiko!
- → Darum: Warum noch Active/Passive mit DRBD?
- → Stattdessen einfacher und sicherer Active/Active mit Replikation!

Replikation und Performance?

- → Beide Nodes schreiben parallel -- keine Einsparung
- → Aber: Lesezugriffe verteilen sich auf beide Hosts
- → Schafft immerhin eine gewisse Entlastung

Replikation und Loadbalancing

- → Active/Passive: Eine Service-IP über Heartbeat, Pacemaker oder VRRP
- → Active/Active: Layer-4-Loadbalancer verteilt die Verbindungen auf die Nodes Kleine Setups: Jeweils nur einen Node ansprechen => Cache!
- → Active/Active stets einfacher und besser. Prima!

Maintenance mit "doveadm replicatior"

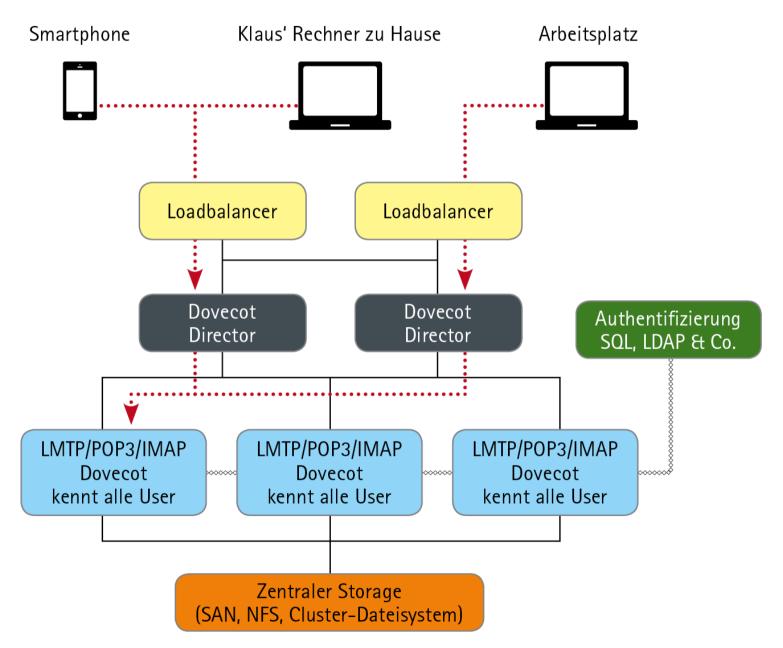
- → doveadm replicator status
 - → Liefert Statistik
- → doveadm replicator status '*'

```
username priority fast sync full sync failed susi@example.com none 00:01:20 00:07:52 y klaus@example.com none 00:01:20 00:07:52 y
```

- → doveadm replicator replicate '*'
- → doveadm replicator remove test@example.com
 - → Sperrt einzelnen User

Beachtenswertes bei Replikation

- → Dovecot repliziert E-Mails + Sieve-Scripte, sonst nichts.
- → Mailserver dürfen keine gemeinsame Quota-Datenbank nutzen
 - → Sonst wird alles doppelt gezählt
- → Jeder Index ist auf sich selbst angewiesen
 - → `doveadm purge`-Kommando auf jedem Server ausführen
 - → `doveadm force-resync` oder `doveadm quota recalc` wirken auch nur individuell pro Server
- Im Cluster muβ jeder Host einen eigenen Hostnamen haben
- → Sonderfälle bei Public Namespace & Co.


Dovecot Director

Get most out of your cluster experience

- → Nutzer haben viele parallele IMAP-Verbindungen (Desktop, Office, Handy)
- → Für bestes Caching-Verhalten gleichen Nutzer immer auf gleichen Ziel-Server terminieren
- → Aber: Verschiedene Source-IPs!
 - "Sticky connections" / "persistente Verbindungen" setzen gleiche Source-IP voraus
- → Layer-4-Loadbalancer kann Nutzer nicht bündeln!

Dovecot Director als Layer-7-Balancer

- → Der Director kennt die Dovecot-Backends und deren Zustand
- → Dynamisches Management möglich
 - → Nodes abschalten/hinzufügen!
- → Verteilt Nutzer auf die Backends
 - → gleiche Logins immer zum gleichen Server
 - → Gewichtete Verteilung auf die Backends möglich!
- → Dovecot Director kann man nutzen, muß man i.d.R. aber nicht, solange keine FS-Probleme zu erwarten sind
- → Kann Active/Active/Active parallel betrieben werden die Directoren besitzen über ein Protokoll gemeinsames Wissen
 - → Ausfallsicherheit: Layer-4-Loadbalancer verteilt auf mehrere Directoren


```
director servers = 192.168.3.10:9090 192.168.3.11:9090
director mail servers = 192.168.50.161 192.168.50.162 192.168.50.163
service director {
  unix listener login/director {
   mode = 0666
  inet listener {
   port = 9090
service imap-login {
  executable = imap-login director
service pop3-login {
  executable = pop3-login director
# Enable director for LMTP proxying:
protocol lmtp {
  auth socket path = director-userdb
```


Dovecot Director Maintenance

→ doveadm director ring status director ip port type last failed 192.168.50.161 9090 self never 192.168.50.162 9090 l+r never

→ doveadm director status

mail server ip vhosts users 192.168.50.161 100 5427 192.168.50.162 100 5877

Dovecot Director Maintenance

- → doveadm director add 192.168.50.161 150
 - → Fügt Host mit Gewichtung "150" hinzu
- → doveadm director remove 192.168.50.161
 - → Entfernt Host aus Balancing
- → doveadm director dump
 - → Sichert aktuelle dynamische Konfiguration für späteren Neustart

Dovecot Director Maintenance

→ doveadm director status klaus@example.com

Current: not assigned Hashed: 192,168,50,161

Initial config: 192.168.50.161

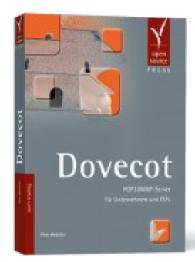
- → doveadm director map <host>
 - → Zeigt aktuelle User-Zuordnungen
- → doveadm director flush 192.168.50.161 (auch: all)
 - → Löscht Zuordnungen dieses Hosts

Idealsetup

- → Ein Active/Passive Layer-4-Loadbalancer-Pärchen
 - → (Oder Multicast?)
- → verteilt auf > zwei Directoren
- → verteilen auf repliziert <n> partitionierte Server
 - → (ggf. nochmal durch Layer-4-Balancing ergänzt)
- → die jeweils im Pärchen repliziert betrieben werden

Howto Dovecot-Replikation

Das Howto zum Replikations-Cluster


- → "doveadm user '*'" muß funktionieren
 - → "Iterate Query" in der userdb-Config
 - → Generiert Userliste für vollen Replikationsdurchlauf
- → Replikations-Config aktivieren (nächste Folie)
- → "doveadm replicator"-Kommando anwerfen
 - → Zweiten Node beobachten
 - → Logfile lesen

```
mail plugins = $mail plugins notify replication
 service aggregator {
   fifo listener replication-notify-fifo {
     user = vmail
   }
   unix listener replication-notify {
     user = vmail
 service replicator {
   process min avail = 1
   unix listener replicator-doveadm {
     mode = 0600
 service doveadm {
   inet listener {
     port = 12345
   }
 doveadm port = 12345
 doveadm password = secret
 plugin {
   mail replica = tcp:192.168.50.161
 replication dsync parameters = -d -n INBOX -1 30 -U
```


Wenn es um echtes Papier geht:

- → "Dovecot POP3/IMAP-Server für Unternehmen und ISPs"
 - → Das erste Dovecot-Buch auf 400 Seiten
 - → Shared Folder, Quota, Cluster: Alles drin.
- → Das Postfix-Buch Sichere Mailserver mit Postfix
 - → Der Klassiker mit rund 1000 Seiten
 - → Beinhaltet auch Spamschutz und Rechtsgrundlagen

→ Natürlich und gerne stehe ich Ihnen jederzeit mit Rat und Tat zur Verfügung und freue mich auf neue Kontakte.

Peer Heinlein

Mail: p.heinlein@heinlein-support.de

Telefon: 030/40 50 51 - 42

- → Wenn's brennt:
 - → Heinlein Support 24/7 Notfall-Hotline: 030/40 505 110

Ja, diese Folien stehen auch als PDF im Netz... http://www.heinlein-support.de/vortrag

Soweit, so gut.

Gleich sind Sie am Zug: Fragen und Diskussionen!

Wir suchen neue Kollegen für:

Helpdesk, Administration, Consultanting!

Wir bieten: Spannende Projekte, Kundenlob, eigenständige Arbeit, keine Überstunden, Teamarbeit

...und natürlich: Linux, Linux, Linux...

http://www.heinlein-support.de/jobs

Und nun...

- → Vielen Dank für's Zuhören...
- → Schönen Tag noch...
- → Und viel Erfolg an der Tastatur...

Bis bald.

Heinlein Support hilft bei allen Fragen rund um Linux-Server

HEINLEIN AKADEMIE

Von Profis für Profis: Wir vermitteln in Training und Schulung die oberen 10% Wissen: geballtes Wissen und umfangreiche Praxiserfahrung.

HEINLEIN HOSTING

Individuelles Business-Hosting mit perfekter Maintenance durch unsere Profis. Sicherheit und Verfügbarkeit stehen an erster Stelle.

HEINLEIN CONSULTING

Das Backup für Ihre Linux-Administration: LPIC-2-Profis lösen im CompetenceCall Notfälle, auch in SLAs mit 24/7-Verfügbarkeit.

HEINLEIN ELEMENTS

Hard- und Software-Appliances für Archivierung, IMAP und Anti-Spam und speziell für den Serverbetrieb konzipierte Software rund ums Thema E-Mail.